\(\int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [1036]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 360 \[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \left (a^2-b^2\right ) \left (25 a^2 A+8 A b^2-14 a b B+35 a^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{105 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (8 A b^3+63 a^3 B-14 a b^2 B+a^2 b (19 A+35 C)\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{105 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \left (4 A b^2-7 a b B-5 a^2 (5 A+7 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}} \]

[Out]

2/105*(a^2-b^2)*(25*A*a^2+8*A*b^2-14*B*a*b+35*C*a^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF
(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a^3/d/(a+b*sec(d*
x+c))^(1/2)+2/7*A*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(5/2)+2/35*(A*b+7*B*a)*sin(d*x+c)*(a+b*sec(d*
x+c))^(1/2)/a/d/sec(d*x+c)^(3/2)-2/105*(4*A*b^2-7*B*a*b-5*a^2*(5*A+7*C))*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a^2
/d/sec(d*x+c)^(1/2)+2/105*(8*A*b^3+63*B*a^3-14*B*a*b^2+a^2*b*(19*A+35*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2
*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^3/d/((b+a*cos(d*x+c
))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.35 (sec) , antiderivative size = 360, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4179, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 \sin (c+d x) \left (-5 a^2 (5 A+7 C)-7 a b B+4 A b^2\right ) \sqrt {a+b \sec (c+d x)}}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \left (25 a^2 A+35 a^2 C-14 a b B+8 A b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{105 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (63 a^3 B+a^2 b (19 A+35 C)-14 a b^2 B+8 A b^3\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{105 a^3 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 (7 a B+A b) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{35 a d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(7/2),x]

[Out]

(2*(a^2 - b^2)*(25*a^2*A + 8*A*b^2 - 14*a*b*B + 35*a^2*C)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*
x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(105*a^3*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(8*A*b^3 + 63*a^3*B - 14*a*
b^2*B + a^2*b*(19*A + 35*C))*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(105*a^3*d*Sqrt[(
b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*A*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*
x]^(5/2)) + (2*(A*b + 7*a*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(35*a*d*Sec[c + d*x]^(3/2)) - (2*(4*A*b^2
- 7*a*b*B - 5*a^2*(5*A + 7*C))*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(105*a^2*d*Sqrt[Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4179

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*
m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2}{7} \int \frac {\frac {1}{2} (A b+7 a B)+\frac {1}{2} (5 a A+7 b B+7 a C) \sec (c+d x)+\frac {1}{2} b (4 A+7 C) \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {4 \int \frac {\frac {1}{4} \left (4 A b^2-7 a b B-5 a^2 (5 A+7 C)\right )-\frac {1}{4} a (23 A b+21 a B+35 b C) \sec (c+d x)-\frac {1}{2} b (A b+7 a B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{35 a} \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \left (4 A b^2-7 a b B-5 a^2 (5 A+7 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {8 \int \frac {\frac {1}{8} \left (8 A b^3+63 a^3 B-14 a b^2 B+a^2 b (19 A+35 C)\right )+\frac {1}{8} a \left (2 A b^2+49 a b B+5 a^2 (5 A+7 C)\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{105 a^2} \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \left (4 A b^2-7 a b B-5 a^2 (5 A+7 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2-b^2\right ) \left (25 a^2 A+8 A b^2-14 a b B+35 a^2 C\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 a^3}+\frac {\left (8 A b^3+63 a^3 B-14 a b^2 B+a^2 b (19 A+35 C)\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{105 a^3} \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \left (4 A b^2-7 a b B-5 a^2 (5 A+7 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2-b^2\right ) \left (25 a^2 A+8 A b^2-14 a b B+35 a^2 C\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{105 a^3 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (8 A b^3+63 a^3 B-14 a b^2 B+a^2 b (19 A+35 C)\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{105 a^3 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \left (4 A b^2-7 a b B-5 a^2 (5 A+7 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2-b^2\right ) \left (25 a^2 A+8 A b^2-14 a b B+35 a^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{105 a^3 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (8 A b^3+63 a^3 B-14 a b^2 B+a^2 b (19 A+35 C)\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{105 a^3 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \left (a^2-b^2\right ) \left (25 a^2 A+8 A b^2-14 a b B+35 a^2 C\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{105 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (8 A b^3+63 a^3 B-14 a b^2 B+a^2 b (19 A+35 C)\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{105 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{35 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \left (4 A b^2-7 a b B-5 a^2 (5 A+7 C)\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{105 a^2 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 12.07 (sec) , antiderivative size = 4441, normalized size of antiderivative = 12.34 \[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Result too large to show} \]

[In]

Integrate[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-4*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a
*b^2*B + 35*a^2*b*C)*Cot[c])/(105*a^3*d) + ((115*a^2*A - 16*A*b^2 + 28*a*b*B + 140*a^2*C)*Cos[d*x]*Sin[c])/(10
5*a^2*d) + (2*(A*b + 7*a*B)*Cos[2*d*x]*Sin[2*c])/(35*a*d) + (A*Cos[3*d*x]*Sin[3*c])/(7*d) + ((115*a^2*A - 16*A
*b^2 + 28*a*b*B + 140*a^2*C)*Cos[c]*Sin[d*x])/(105*a^2*d) + (2*(A*b + 7*a*B)*Cos[2*c]*Sin[2*d*x])/(35*a*d) + (
A*Cos[3*c]*Sin[3*d*x])/(7*d)))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(5/2)) - (20*A*
AppellF1[1/2, 1/2, 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 +
Cot[c]^2]*(1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[
Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2])))]*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*(A
 + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[(a*Sqrt[1 + Cot[c]^2] - a*Sqrt[1 + Cot[c]
^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]*Sqrt[(a*Sqrt[1 + Cot[c]^2] + a*Sqrt[1 + Cot[
c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c])]*Sqrt[b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d
*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1
 + Cot[c]^2]*Sec[c + d*x]^(5/2)) - (8*A*b^2*AppellF1[1/2, 1/2, 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin
[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a
*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[
c]^2])))]*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sq
rt[(a*Sqrt[1 + Cot[c]^2] - a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]*
Sqrt[(a*Sqrt[1 + Cot[c]^2] + a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c])
]*Sqrt[b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]])/(105*a^2*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*
C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*Sec[c + d*x]^(5/2)) - (28*b*B*AppellF1[1/2, 1/2,
 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(1 + (b*
Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt
[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2])))]*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]
+ C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[(a*Sqrt[1 + Cot[c]^2] - a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcT
an[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]*Sqrt[(a*Sqrt[1 + Cot[c]^2] + a*Sqrt[1 + Cot[c]^2]*Sin[d*x - Ar
cTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c])]*Sqrt[b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]
]]])/(15*a*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*Sec
[c + d*x]^(5/2)) - (4*C*AppellF1[1/2, 1/2, 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan
[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*
Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2])))]*Csc[c]*Sqr
t[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[(a*Sqrt[1 + Cot[c
]^2] - a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]*Sqrt[(a*Sqrt[1 + Cot
[c]^2] + a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c])]*Sqrt[b - a*Sqrt[1
+ Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*C
os[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*Sec[c + d*x]^(5/2)) - (38*A*b*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c
 + d*x] + C*Sec[c + d*x]^2)*((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]
]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*(b + a*Cos[c
]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])
)))]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x + ArcTan[Tan
[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*x + ArcTan[T
an[c]]]*Sqrt[1 + Tan[c]^2])/(-(b*Sec[c]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*
Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[
d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[T
an[c]]]*Sqrt[1 + Tan[c]^2]]))/(105*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x]
)*Sec[c + d*x]^(5/2)) - (16*A*b^3*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((Ap
pellF1[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1
 + Tan[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt
[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2]))))]*Sin[d*x + ArcTan[Tan[c]]]*T
an[c])/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec
[c] + a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(-(b
*Sec[c]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x
 + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + T
an[c]^2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(1
05*a^2*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(5/2)) - (6*a
*B*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((AppellF1[-1/2, -1/2, -1/2, 1/2, -
((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Sec[c])/(a
*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Ta
n[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2]))))]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]^2]*Sqrt
[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]^2])]*Sq
rt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(-(b*Sec[c]) + a*Sqrt[1 + Tan[c]^2]
)]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt
[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^2 + a^2*
Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d*Sqrt[b + a*Cos[c + d*x]]*(A
+ 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(5/2)) + (4*b^2*B*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*
(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + Ar
cTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*
(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1
+ Tan[c]^2]))))]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x
+ ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*
x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(-(b*Sec[c]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcT
an[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a
*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*
x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(15*a*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos
[2*c + 2*d*x])*Sec[c + d*x]^(5/2)) - (2*b*C*Csc[c]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*
x]^2)*((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))
/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan
[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2]))))]*Sin[d*x + ArcTan[
Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^
2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c
]^2])/(-(b*Sec[c]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) -
 ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*
Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c
]^2]]))/(3*d*Sqrt[b + a*Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(6346\) vs. \(2(384)=768\).

Time = 13.82 (sec) , antiderivative size = 6347, normalized size of antiderivative = 17.63

method result size
parts \(\text {Expression too large to display}\) \(6347\)
default \(\text {Expression too large to display}\) \(6397\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 630, normalized size of antiderivative = 1.75 \[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-15 i \, {\left (5 \, A + 7 \, C\right )} a^{4} - 21 i \, B a^{3} b + 2 i \, {\left (16 \, A + 35 \, C\right )} a^{2} b^{2} - 28 i \, B a b^{3} + 16 i \, A b^{4}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (15 i \, {\left (5 \, A + 7 \, C\right )} a^{4} + 21 i \, B a^{3} b - 2 i \, {\left (16 \, A + 35 \, C\right )} a^{2} b^{2} + 28 i \, B a b^{3} - 16 i \, A b^{4}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-63 i \, B a^{4} - i \, {\left (19 \, A + 35 \, C\right )} a^{3} b + 14 i \, B a^{2} b^{2} - 8 i \, A a b^{3}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (63 i \, B a^{4} + i \, {\left (19 \, A + 35 \, C\right )} a^{3} b - 14 i \, B a^{2} b^{2} + 8 i \, A a b^{3}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \frac {6 \, {\left (15 \, A a^{4} \cos \left (d x + c\right )^{3} + 3 \, {\left (7 \, B a^{4} + A a^{3} b\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, {\left (5 \, A + 7 \, C\right )} a^{4} + 7 \, B a^{3} b - 4 \, A a^{2} b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{315 \, a^{4} d} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/315*(sqrt(2)*(-15*I*(5*A + 7*C)*a^4 - 21*I*B*a^3*b + 2*I*(16*A + 35*C)*a^2*b^2 - 28*I*B*a*b^3 + 16*I*A*b^4)*
sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*
a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(15*I*(5*A + 7*C)*a^4 + 21*I*B*a^3*b - 2*I*(16*A + 35*C)*a^2*b^2 + 28*I*B*a
*b^3 - 16*I*A*b^4)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*
cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 3*sqrt(2)*(-63*I*B*a^4 - I*(19*A + 35*C)*a^3*b + 14*I*B*a^2*b^2
- 8*I*A*a*b^3)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInver
se(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a))
 - 3*sqrt(2)*(63*I*B*a^4 + I*(19*A + 35*C)*a^3*b - 14*I*B*a^2*b^2 + 8*I*A*a*b^3)*sqrt(a)*weierstrassZeta(-4/3*
(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b -
 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) + 6*(15*A*a^4*cos(d*x + c)^3 + 3*(7*B*a^4 +
 A*a^3*b)*cos(d*x + c)^2 + (5*(5*A + 7*C)*a^4 + 7*B*a^3*b - 4*A*a^2*b^2)*cos(d*x + c))*sqrt((a*cos(d*x + c) +
b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^4*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2)/sec(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \]

[In]

int(((a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(7/2),x)

[Out]

int(((a + b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(7/2), x)